Special Relativistic Godunov SPH: Complete Mathematical Formulation

| November 19, 2025

Comprehensive SRGSPH reference covering notation, conservative forms, SPH formulations, Riemann solvers, primitive recovery, and time integration.

Table of Contents

Notation and Conventions

Units and Speed of Light

  • Theory: Speed of light cc kept explicit
  • Numerical calculations: c=1c = 1 [SRGSPH, numerical implementation]
  • Minkowski metric: ημν=diag(1,1,1,1)\eta^{\mu\nu} = \text{diag}(-1, 1, 1, 1)

SRGSPH Symbols (Kitajima et al.)

Spacetime coordinates:

  • tt: time
  • x=(x,y,z)\mathbf{x} = (x, y, z) or x\bm{x}: spatial position vector
  • xμ=(t,x,y,z)x^\mu = (t, x, y, z): spacetime coordinates (μ=0,1,2,3\mu = 0, 1, 2, 3)

Primitive variables (physical quantities):

  • nn: baryon number density in rest frame [SRGSPH Eq. 114]
  • NN: baryon number density in lab frame [SRGSPH Eq. 91]
  • PP: pressure [SRGSPH Eq. 92]
  • v=(vx,vy,vz)\bm{v} = (v^x, v^y, v^z): three-velocity [SRGSPH]
  • vnv^n: normal velocity component
  • vt=(vy)2+(vz)2v^t = \sqrt{(v^y)^2 + (v^z)^2}: tangential velocity magnitude
  • uu: thermal energy per baryon [SRGSPH Eq. 120]
  • γc\gamma_c: ratio of specific heats (adiabatic index) [SRGSPH Eq. 119]
  • csc_s: sound speed

Relativistic quantities:

  • γ\gamma: Lorentz factor [SRGSPH Eq. 111]
  • HH: enthalpy per baryon [SRGSPH Eq. 112]
  • S\mathbf{S} or S\bm{S}: relativistic canonical momentum per baryon [SRGSPH Eq. 104]
  • ee: canonical energy per baryon in lab frame [SRGSPH Eq. 107]
  • uμu^\mu: four-velocity

Conserved variables (grid-based formulation):

  • DD: conserved rest-mass density
  • SiS^i: conserved momentum density
  • τ\tau: conserved energy density

SPH-specific quantities:

  • ν\nu: baryon number in an SPH particle [SRGSPH Eq. 134]
  • W(x,h)W(\bm{x}, h): kernel function [SRGSPH Eq. 138]
  • hh or h(x)h(\bm{x}): smoothing length
  • VpV_p or VpV_{\rm p}: particle volume [SRGSPH Eq. 221]
  • fi\langle f_i \rangle: convolved quantity for particle ii [SRGSPH Eq. 148]
  • dd: number of spatial dimensions
  • η\eta: smoothing length parameter [SRGSPH Eq. 231]
  • CsmoothC_{\rm smooth}: smoothing coefficient [SRGSPH Eq. 233]

Riemann problem notation:

  • L,RL, R: left and right initial states
  • L,RL_*, R_*: left and right intermediate states
  • PP_*: pressure in intermediate state
  • vxv^x_*: normal velocity in intermediate state
  • a,ba, b: states ahead and behind a wave
  • ξ\xi: self-similarity variable (x/tx/t)
  • jj: invariant mass flux across shock
  • VsV_s: shock velocity
  • γs\gamma_s: shock Lorentz factor

Relationship to Pons et al. Notation

QuantitySRGSPH (this doc)Pons et al.
Lorentz factorγ\gammaWW
Enthalpy per baryonHH (with explicit c2c^2)hh (with c=1c=1)
PressurePPpp
Adiabatic indexγc\gamma_cγ\gamma
Baryon density (rest)nnρ/mb\rho/m_b or absorbed into ρ\rho
Thermal energy/baryonuuϵρ/n\epsilon \rho/n or absorbed

Key difference: SRGSPH uses enthalpy per baryon HH with baryon number density nn, while Pons uses specific enthalpy hh with mass density ρ\rho.

When c=1c=1 and using natural units: HhH \approx h numerically, but the formulations differ in how they’re derived.


Lagrangian Derivation of Equations of Motion

This section provides the fundamental Lagrangian derivations for both non-relativistic and special relativistic hydrodynamics, showing how the equations of motion used in the simulation arise from first principles.

Non-Relativistic Lagrangian Formulation

Action Principle

The non-relativistic hydrodynamics equations can be derived from a variational principle applied to the action:

S=dtd3xL(ρ,v,ρ,v)S = \int dt \int d^3x \, \mathcal{L}(\rho, \bm{v}, \nabla\rho, \nabla\bm{v})

where L\mathcal{L} is the Lagrangian density.

Lagrangian Density for Ideal Fluid

For a non-relativistic ideal fluid, the Lagrangian density is:

L=ρ[12v2u(ρ,s)]\mathcal{L} = \rho \left[ \frac{1}{2} \bm{v}^2 - u(\rho, s) \right]

where:

  • ρ\rho is the mass density
  • v\bm{v} is the velocity field
  • u(ρ,s)u(\rho, s) is the specific internal energy
  • ss is the specific entropy (constant in isentropic flow)

Euler-Lagrange Equations

Using the Lagrangian formulation with material (Lagrangian) coordinates a\bm{a} and spatial (Eulerian) coordinates x(a,t)\bm{x}(\bm{a}, t), the equations of motion are:

Continuity Equation:

ρt+(ρv)=0\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \bm{v}) = 0

Euler Equation (Momentum Conservation):

ρdvdt=P\rho \frac{d\bm{v}}{dt} = -\nabla P

where:

ddt=t+v\frac{d}{dt} = \frac{\partial}{\partial t} + \bm{v} \cdot \nabla

is the material derivative, and the pressure is:

P=ρ2uρsP = \rho^2 \frac{\partial u}{\partial \rho}\bigg|_s

Energy Equation:

dedt=Pv\frac{de}{dt} = -P \nabla \cdot \bm{v}

where e=ρue = \rho u is the internal energy density.

Derivation of Momentum Equation

Starting from the Lagrangian L\mathcal{L}, the momentum equation follows from:

ddt(δLδv)=δLδx\frac{d}{dt}\left(\frac{\delta \mathcal{L}}{\delta \bm{v}}\right) = \frac{\delta \mathcal{L}}{\delta \bm{x}}

Computing the variational derivatives:

δLδv=ρv\frac{\delta \mathcal{L}}{\delta \bm{v}} = \rho \bm{v} δLδx=(ρuρ)=P\frac{\delta \mathcal{L}}{\delta \bm{x}} = -\nabla \left( \rho \frac{\partial u}{\partial \rho} \right) = -\nabla P

This yields:

d(ρv)dt=P\frac{d(\rho \bm{v})}{dt} = -\nabla P

Using the continuity equation to expand the material derivative:

ρdvdt+vdρdt=P\rho \frac{d\bm{v}}{dt} + \bm{v} \frac{d\rho}{dt} = -\nabla P

Since dρdt=ρv\frac{d\rho}{dt} = -\rho \nabla \cdot \bm{v}, we recover:

ρdvdt=P\rho \frac{d\bm{v}}{dt} = -\nabla P

Canonical Momentum (Non-Relativistic)

The canonical momentum density is:

π=δLδv=ρv\bm{\pi} = \frac{\delta \mathcal{L}}{\delta \bm{v}} = \rho \bm{v}

The momentum per unit mass is simply v\bm{v}.

Relativistic Lagrangian Formulation

Four-Dimensional Action Principle

In special relativity, the action is constructed to be Lorentz invariant:

S=d4xLS = \int d^4x \, \mathcal{L}

where d4x=dtd3xd^4x = dt \, d^3x and L\mathcal{L} is the Lagrangian density (scalar under Lorentz transformations).

Lagrangian Density for Perfect Fluid

For a relativistic perfect fluid, the Lagrangian density is:

L=ρc21v2c2ρu(ρ,s)1v2c2\mathcal{L} = -\rho c^2 \sqrt{1 - \frac{\bm{v}^2}{c^2}} - \rho u(\rho, s) \sqrt{1 - \frac{\bm{v}^2}{c^2}}

This can be rewritten using the Lorentz factor γ=(1v2/c2)1/2\gamma = (1 - \bm{v}^2/c^2)^{-1/2}:

L=ργ(c2+u)\mathcal{L} = -\frac{\rho}{\gamma} \left( c^2 + u \right)

where ρ/γ=n\rho/\gamma = n is the rest-frame (proper) baryon density.

Alternative Form Using Baryon Number Density

Using the rest-frame baryon density nn and enthalpy per baryon HH:

L=nHc2/γ=nc2(1+u/c2+P/(nc2))/γ\mathcal{L} = -n H c^2 / \gamma = -n c^2 (1 + u/c^2 + P/(nc^2)) / \gamma

where:

H=1+uc2+Pnc2H = 1 + \frac{u}{c^2} + \frac{P}{nc^2}

is the enthalpy per baryon [SRGSPH Eq. 112].

Energy-Momentum Tensor

The energy-momentum tensor for a perfect fluid is:

Tμν=(e+P)uμuν+PημνT^{\mu\nu} = (e + P) u^\mu u^\nu + P \eta^{\mu\nu}

where:

  • ee is the energy density (including rest mass)
  • PP is the pressure
  • uμ=γ(c,v)u^\mu = \gamma(c, \bm{v}) is the four-velocity
  • ημν=diag(1,1,1,1)\eta^{\mu\nu} = \text{diag}(-1, 1, 1, 1) is the Minkowski metric

Conservation Laws from Energy-Momentum Tensor

The equations of motion follow from energy-momentum conservation:

μTμν=0\partial_\mu T^{\mu\nu} = 0

Spatial components (ν=i\nu = i): Momentum conservation

tT0i+jTji=0\partial_t T^{0i} + \partial_j T^{ji} = 0

Time component (ν=0\nu = 0): Energy conservation

tT00+iTi0=0\partial_t T^{00} + \partial_i T^{i0} = 0

Canonical Momentum (Relativistic)

The canonical momentum density is derived from the Lagrangian:

π=δLδv=γ2nHv\bm{\pi} = \frac{\delta \mathcal{L}}{\delta \bm{v}} = \gamma^2 n H \bm{v}

The canonical momentum per baryon is [SRGSPH Eq. 104]:

S=πN=γHv\bm{S} = \frac{\bm{\pi}}{N} = \gamma H \bm{v}

where N=γnN = \gamma n is the lab-frame baryon density.

Derivation of Relativistic Euler Equation

Starting from the spatial components of μTμi=0\partial_\mu T^{\mu i} = 0:

t[(ρhγ2)vi]+j[(ρhγ2)vivj+Pδij]=0\partial_t [(\rho h \gamma^2) v^i] + \partial_j [(\rho h \gamma^2) v^i v^j + P \delta^{ij}] = 0

where ρ=mbn\rho = m_b n is the mass density and h=Hh = H when c=1c=1.

Expanding and using the continuity equation, this becomes:

ρhγ2dvidt+vid(ρhγ2)dt=iP\rho h \gamma^2 \frac{dv^i}{dt} + v^i \frac{d(\rho h \gamma^2)}{dt} = -\partial^i P

SRGSPH Form of Momentum Equation

Using the lab-frame baryon density N=γnN = \gamma n and canonical momentum per baryon S=γHv\bm{S} = \gamma H \bm{v}, the momentum equation becomes [SRGSPH Eq. 92]:

dSdt=1NP\frac{d\bm{S}}{dt} = -\frac{1}{N} \nabla P

This is the equation of motion used in SRGSPH.

Derivation of Canonical Energy Equation

The canonical energy per baryon in the lab frame is defined as [SRGSPH Eq. 107]:

e=γHPNc2e = \gamma H - \frac{P}{Nc^2}

The time evolution follows from energy conservation [SRGSPH Eq. 94]:

dedt=1N(Pv)\frac{de}{dt} = -\frac{1}{N} \nabla \cdot (P\bm{v})

Physical Interpretation

Non-relativistic limit: As v/c0\bm{v}/c \to 0:

  • γ1\gamma \to 1
  • H1+u/c2+P/(nc2)1H \to 1 + u/c^2 + P/(nc^2) \approx 1 (for non-relativistic temperatures)
  • S=γHvv\bm{S} = \gamma H \bm{v} \approx \bm{v} (canonical momentum → velocity)
  • e=γHP/(Nc2)1+u/c2e = \gamma H - P/(Nc^2) \approx 1 + u/c^2 (rest mass + thermal energy)

Relativistic regime: When vc\bm{v} \sim c or unc2u \sim nc^2:

  • Lorentz factor γ1\gamma \gg 1 couples all velocity components
  • Enthalpy H1H \gg 1 amplifies pressure effects
  • Canonical momentum S=γHv\bm{S} = \gamma H \bm{v} differs significantly from v\bm{v}
  • Energy ee includes kinetic and internal contributions weighted by γH\gamma H

Comparison of Lagrangian Approaches

AspectNon-RelativisticRelativistic (SRGSPH)
ActionS=dtd3xLS = \int dt \int d^3x \, \mathcal{L}S=d4xLS = \int d^4x \, \mathcal{L}
Lagrangian densityL=ρ[12v2u]\mathcal{L} = \rho[\frac{1}{2}\bm{v}^2 - u]L=nH/γ\mathcal{L} = -nH/\gamma (with c=1c=1)
Canonical momentumπ=ρv\bm{\pi} = \rho \bm{v}π=γ2nHv\bm{\pi} = \gamma^2 n H \bm{v}
Momentum per particlev\bm{v}S=γHv\bm{S} = \gamma H \bm{v}
EoM formdvdt=1ρP\frac{d\bm{v}}{dt} = -\frac{1}{\rho}\nabla PdSdt=1NP\frac{d\bm{S}}{dt} = -\frac{1}{N}\nabla P
Energy equationdedt=Pv\frac{de}{dt} = -P\nabla \cdot \bm{v}dedt=1N(Pv)\frac{de}{dt} = -\frac{1}{N}\nabla \cdot (P\bm{v})
SymmetryGalilean invarianceLorentz invariance

Connection to Simulation Implementation

The simulation implements these Lagrangian-derived equations in discretized SPH form:

Non-relativistic SPH (classical GSPH, DISPH):

  • Evolves v\bm{v} directly
  • Pressure gradient computed from kernel-weighted sums
  • Energy equation for thermal evolution

Relativistic SPH (SRGSPH):

  • Evolves canonical variables S\bm{S} and ee
  • Riemann solver computes PijP_{ij}^* and vij\bm{v}_{ij}^* at interfaces
  • Recovers primitive variables (v,n,P,u)(\bm{v}, n, P, u) from (S,e)(\bm{S}, e) using quartic solver
  • All formulations preserve Lorentz invariance of the underlying Lagrangian

Theory of Relativistic Hydrodynamics

Why Relativistic Hydrodynamics is Different

[Based on Pons §1 and SRGSPH §1]

In classical hydrodynamics, tangential velocities remain constant across waves. In relativistic hydrodynamics, this fundamentally changes:

  1. Lorentz factor coupling: All velocity components couple through:

    γ=11v2/c2=11v2/c2\gamma = \frac{1}{\sqrt{1 - \bm{v}^2/c^2}} = \frac{1}{\sqrt{1 - v^2/c^2}}

    where v2=(vx)2+(vy)2+(vz)2v^2 = (v^x)^2 + (v^y)^2 + (v^z)^2

  2. Enthalpy-momentum coupling: Momentum per baryon is:

    S=γHv\bm{S} = \gamma H \bm{v}

    Even for slow flows (γ1\gamma \approx 1), if H>1H > 1 (thermodynamically relativistic), tangential velocities matter.

  3. No universal rest frame: For Riemann problems with arbitrary tangential velocities, no single frame exists where all tangential components vanish.

Conservation Laws

The fundamental conservation laws:

  • Rest-mass (baryon number) conservation: N=γnN = \gamma n conserved per fluid element
  • Energy-momentum conservation: Encoded in energy-momentum tensor

For a perfect fluid:

Tμν=(energy_density+P)uμuν+PημνT^{\mu\nu} = (energy\_density + P) u^\mu u^\nu + P \eta^{\mu\nu}

where the energy-momentum includes rest mass energy.


Basic Equations (SRGSPH Formulation)

Lagrangian Derivative

[SRGSPH Eq. 100]:

ddtt+v\frac{d}{dt} \equiv \partial_t + \bm{v} \cdot \nabla

Fundamental Equations

Equation of Continuity [SRGSPH Eq. 90]:

dNdt=Nv\frac{dN}{dt} = -N \nabla \cdot \bm{v}

Equation of Motion [SRGSPH Eq. 92]:

dSdt=1NP\frac{d\bm{S}}{dt} = -\frac{1}{N} \nabla P

Equation of Energy [SRGSPH Eq. 94]:

dedt=1N(Pv)\frac{de}{dt} = -\frac{1}{N} \nabla \cdot (P\bm{v})

where NN, S\bm{S}, and ee are baryon number density, relativistic canonical momentum per baryon, and canonical energy per baryon in the lab frame [SRGSPH, discussion after Eq. 96].

Relativistic Canonical Quantities

Canonical momentum per baryon [SRGSPH Eq. 104]:

S=γHv\bm{S} = \gamma H \bm{v}

Canonical energy per baryon [SRGSPH Eq. 107]:

e=γHPNc2e = \gamma H - \frac{P}{Nc^2}

Lorentz factor [SRGSPH Eq. 111]:

γ=11v2/c2\gamma = \frac{1}{\sqrt{1 - \bm{v}^2/c^2}}

Enthalpy per baryon [SRGSPH Eq. 112]:

H=1+uc2+Pnc2H = 1 + \frac{u}{c^2} + \frac{P}{nc^2}

where uu is thermal energy per baryon and nn is baryon number density in rest frame.

Lab-rest frame relation [SRGSPH Eq. 114]:

N=γnN = \gamma n

Equation of State

For an ideal gas [SRGSPH Eq. 119]:

P=(γc1)nuP = (\gamma_c - 1) n u

where γc\gamma_c is the adiabatic index (ratio of specific heats).

Sound Speed

For an ideal gas [SRGSPH, after Eq. 394]:

cs2=(γc1)(H1)c2Hc_s^2 = \frac{(\gamma_c - 1)(H - 1) c^2}{H}

With c=1c=1:

cs=(γc1)(H1)Hc_s = \sqrt{\frac{(\gamma_c - 1)(H - 1)}{H}}

Conservative Formulation

For grid-based methods (context for understanding Riemann problems), the conserved variables are:

Rest-mass density (with c=1c=1):

D=ργ=mbnγ=mbND = \rho \gamma = m_b n \gamma = m_b N

Momentum density (with c=1c=1, using specific enthalpy h=Hh = H when c=1c=1):

Si=ρhγ2viS^i = \rho h \gamma^2 v^i

Energy density (with c=1c=1):

τ=ρhγ2PD\tau = \rho h \gamma^2 - P - D

These satisfy conservation form:

U,t+F,i(i)=0\mathbf{U}_{,t} + \mathbf{F}^{(i)}_{,i} = 0

SRGSPH Formulation with Fixed Smoothing Length

Kernel Function

[SRGSPH Eq. 138]: Gaussian kernel in dd dimensions:

W(x,h)=[1hπ]dexp[x2h2]W(\bm{x}, h) = \left[ \frac{1}{h\sqrt{\pi}} \right]^d \exp\left[ -\frac{\bm{x}^2}{h^2} \right]

Number Density Field

[SRGSPH Eq. 134]:

N(x)=νjW(xxj,h)N(\bm{x}) = \nu \sum_j W(\bm{x} - \bm{x}_j, h)

where ν\nu is the (constant) baryon number per SPH particle.

Convolution

[SRGSPH Eqs. 146-148]:

Ni=N(xi)\langle N_i \rangle = N(\bm{x}_i) fi=f(x)W(xxi,h)dx\langle f_i \rangle = \int f(\bm{x}) W(\bm{x} - \bm{x}_i, h) d\bm{x}

Accuracy [SRGSPH Eq. 154]: Error is O(h2)\mathcal{O}(h^2):

fi=f(xi)+h24f(xi)+O(h4)\langle f_i \rangle = f(\bm{x}_i) + \frac{h^2}{4} f''(\bm{x}_i) + \mathcal{O}(h^4)

Equation of Motion (Fixed h)

[SRGSPH Eqs. 162-166], starting from Lagrangian form:

S˙i=jνP(x)N2(x)[ij]W(xxi,h)W(xxj,h)dx\langle \dot{\bm{S}}_i \rangle = -\sum_j \int \frac{\nu P(\bm{x})}{N^2(\bm{x})} [\nabla_i - \nabla_j] W(\bm{x} - \bm{x}_i, h) W(\bm{x} - \bm{x}_j, h) d\bm{x}

Equation of Energy (Fixed h)

[SRGSPH Eqs. 176-181]:

e˙i=jνP(x)v(x)N2(x)[ij]W(xxi,h)W(xxj,h)dx\langle \dot{e}_i \rangle = -\sum_j \int \frac{\nu P(\bm{x}) \bm{v}(\bm{x})}{N^2(\bm{x})} \cdot [\nabla_i - \nabla_j] W(\bm{x} - \bm{x}_i, h) W(\bm{x} - \bm{x}_j, h) d\bm{x}

Evaluation of Convolution Integrals

[SRGSPH Eqs. 188-191], using product of Gaussians:

f(x)N2(x)[ij]W(xxi,h)W(xxj,h)dx\int \frac{f(\bm{x})}{N^2(\bm{x})} [\nabla_i - \nabla_j] W(\bm{x} - \bm{x}_i, h) W(\bm{x} - \bm{x}_j, h) d\bm{x} =fijVij2[iW(xixj,2h)jW(xixj,2h)]= f_{ij} V_{ij}^2 [\nabla_i W(\bm{x}_i - \bm{x}_j, \sqrt{2}h) - \nabla_j W(\bm{x}_i - \bm{x}_j, \sqrt{2}h)]

where:

Effective volume factor [SRGSPH Eq. 194]:

Vij2(h)=1N2(x)(2hπ)dexp[2h2(xxi+xj2)2]dxV_{ij}^2(h) = \int \frac{1}{N^2(\bm{x})} \left( \frac{\sqrt{2}}{h\sqrt{\pi}} \right)^d \exp\left[ -\frac{2}{h^2} \left( \bm{x} - \frac{\bm{x}_i + \bm{x}_j}{2} \right)^2 \right] d\bm{x}

Weighted average [SRGSPH Eq. 196]:

fij(h)=1Vij2f(x)N2(x)(2hπ)dexp[2h2(xxi+xj2)2]dxf_{ij}(h) = \frac{1}{V_{ij}^2} \int \frac{f(\bm{x})}{N^2(\bm{x})} \left( \frac{\sqrt{2}}{h\sqrt{\pi}} \right)^d \exp\left[ -\frac{2}{h^2} \left( \bm{x} - \frac{\bm{x}_i + \bm{x}_j}{2} \right)^2 \right] d\bm{x}

Approximations

[SRGSPH, discussion after Eq. 200]:

  • Vij2V_{ij}^2 approximated by interpolation: Vij2Vij,interp2V_{ij}^2 \approx V_{ij,\text{interp}}^2
  • fijf_{ij} replaced by Riemann solution: fijfijf_{ij} \approx f_{ij}^*

Final SRGSPH Equations (Fixed h)

Equation of Motion [SRGSPH Eq. 209]:

S˙i=jνPijVij,interp2[iW(xixj,2h)jW(xixj,2h)]\langle \dot{\bm{S}}_i \rangle = -\sum_j \nu P_{ij}^* V_{ij,\text{interp}}^2 [\nabla_i W(\bm{x}_i - \bm{x}_j, \sqrt{2}h) - \nabla_j W(\bm{x}_i - \bm{x}_j, \sqrt{2}h)]

Equation of Energy [SRGSPH Eq. 212]:

e˙i=jνPijvijVij,interp2[iW(xixj,2h)jW(xixj,2h)]\langle \dot{e}_i \rangle = -\sum_j \nu P_{ij}^* \bm{v}_{ij}^* \cdot V_{ij,\text{interp}}^2 [\nabla_i W(\bm{x}_i - \bm{x}_j, \sqrt{2}h) - \nabla_j W(\bm{x}_i - \bm{x}_j, \sqrt{2}h)]

Conservation: Anti-symmetry in (i,j)(i,j) ensures total momentum and energy conservation [SRGSPH Eq. 214].


SRGSPH Formulation with Variable Smoothing Length

Particle Volume Definition

[SRGSPH Eq. 221]:

Vp(x)=[jW(xxj,h(x))]1V_{\rm p}(\bm{x}) = \left[ \sum_j W(\bm{x} - \bm{x}_j, h(\bm{x})) \right]^{-1}

Smoothing Length Definition

[SRGSPH Eq. 231]:

h(x)=η[Vp(x)]1/dh(\bm{x}) = \eta [V_{\rm p}^*(\bm{x})]^{1/d}

where [SRGSPH Eq. 233]:

Vp(x)=[jW(xxj,Csmoothh(x))]1V_{\rm p}^*(\bm{x}) = \left[ \sum_j W(\bm{x} - \bm{x}_j, C_{\rm smooth} h(\bm{x})) \right]^{-1}

Typical values [SRGSPH, after Eq. 236]: η=1.0\eta = 1.0, Csmooth=2.0C_{\rm smooth} = 2.0

Iterative solution [SRGSPH, discussion after Eq. 238]: Iterate Eqs. (231) and (233) until convergence.

Number Density (Volume-Based)

[SRGSPH Eq. 243]:

N(x)=ν(x)Vp1(x)N(\bm{x}) = \nu(\bm{x}) V_{\rm p}^{-1}(\bm{x})

where ν(x)\nu(\bm{x}) varies spatially.

Final SRGSPH Equations (Variable h)

Equation of Motion [SRGSPH Eq. 371]:

νiS˙i=jPijVij,interp2[iW(xixj,2hi)jW(xixj,2hj)]\langle \nu_i \dot{\bm{S}}_i \rangle = -\sum_j P_{ij}^* V_{ij,\text{interp}}^2 [\nabla_i W(\bm{x}_i - \bm{x}_j, \sqrt{2}h_i) - \nabla_j W(\bm{x}_i - \bm{x}_j, \sqrt{2}h_j)]

Equation of Energy [SRGSPH Eq. 373]:

νie˙i=jPijvijVij,interp2[iW(xixj,2hi)jW(xixj,2hj)]\langle \nu_i \dot{e}_i \rangle = -\sum_j P_{ij}^* \bm{v}_{ij}^* \cdot V_{ij,\text{interp}}^2 [\nabla_i W(\bm{x}_i - \bm{x}_j, \sqrt{2}h_i) - \nabla_j W(\bm{x}_i - \bm{x}_j, \sqrt{2}h_j)]

where averaging ensures symmetry: Vij2=(Vij2(hi)+Vij2(hj))/2V_{ij}^2 = (V_{ij}^2(h_i) + V_{ij}^2(h_j))/2 [SRGSPH Eq. 365].


Riemann Problem Theory

Problem Setup

Initial left and right states at t=0t=0, x=0x=0:

  • Left: (PL,nL,vLx,vLy,vLz,uL)(P_L, n_L, v_L^x, v_L^y, v_L^z, u_L)
  • Right: (PR,nR,vRx,vRy,vRz,uR)(P_R, n_R, v_R^x, v_R^y, v_R^z, u_R)

Compute derived quantities using SRGSPH formulations:

  • γL,γR\gamma_L, \gamma_R from velocities [Eq. 111]
  • HL,HRH_L, H_R from EOS [Eqs. 112, 119]

Wave Structure

[Pons §5]: Three waves emerge:

L  W  L  C  R  W  RL \; \mathcal{W}_\leftarrow \; L_* \; \mathcal{C} \; R_* \; \mathcal{W}_\rightarrow \; R
  • W\mathcal{W}: shock or rarefaction
  • C\mathcal{C}: contact discontinuity

Contact discontinuity:

  • Continuous: PP, vxv^x
  • Discontinuous: nn, vy,zv^{y,z}, uu

Self-Similarity

All waves satisfy ξ=x/t=constant\xi = x/t = \text{constant}, reducing PDEs to ODEs.

Riemann Invariants (Key Difference from Newtonian)

[Pons Eqs. 3.8-3.9, adapted to SRGSPH]:

Across rarefactions and shocks, with c=1c=1:

Hγvy=constantH \gamma v^y = \text{constant} Hγvz=constantH \gamma v^z = \text{constant}

Physical meaning: The “relativistic tangential momentum per baryon” is conserved, but actual tangential velocity changes due to enthalpy and Lorentz factor variations.


Riemann Problem: Rarefaction Waves

Characteristic Speeds

[Pons Eq. 3.6], with c=1c=1:

ξ=vx(1cs2)±cs(1v2)[1v2cs2(vx)2(1cs2)]1v2cs2\xi = \frac{v^x(1 - c_s^2) \pm c_s \sqrt{(1 - v^2)[1 - v^2 c_s^2 - (v^x)^2(1 - c_s^2)]}}{1 - v^2 c_s^2}

Reduced System

[Pons Eqs. 3.7-3.9, with SRGSPH variables, c=1c=1]:

ODE:

ρmhγ2(vxξ)dvx+(1ξvx)dP=0\rho_m h \gamma^2 (v^x - \xi) dv^x + (1 - \xi v^x) dP = 0

where ρm=mbn\rho_m = m_b n is mass density, and h=Hh = H when c=1c=1.

Riemann invariants:

Hγvy=constantH \gamma v^y = \text{constant} Hγvz=constantH \gamma v^z = \text{constant}

ODE in Standard Form

[Pons Eq. 3.10, with c=1c=1]:

dvxdP=±1ρmhγ2cs11+g(ξ±,vx,vt)\frac{dv^x}{dP} = \pm \frac{1}{\rho_m h \gamma^2 c_s} \frac{1}{\sqrt{1 + g(\xi_\pm, v^x, v^t)}}

where:

g(ξ±,vx,vt)=(vt)2(ξ±21)(1ξ±vx)2g(\xi_\pm, v^x, v^t) = \frac{(v^t)^2 (\xi_\pm^2 - 1)}{(1 - \xi_\pm v^x)^2}

Post-Rarefaction Tangential Velocity

[Pons Eq. 3.11, with SRGSPH HH, c=1c=1]:

vbt=Haγavat{1(vbx)2Hb2+(Haγavat)2}1/2v_b^t = H_a \gamma_a v_a^t \left\{ \frac{1 - (v_b^x)^2}{H_b^2 + (H_a \gamma_a v_a^t)^2} \right\}^{1/2}

Riemann Problem: Shock Waves

Rankine-Hugoniot Jump Conditions

[Pons Eqs. 4.1-4.2]: Mass and energy-momentum conservation across shocks.

Invariant Mass Flux

[Pons Eq. 4.7, with c=1c=1]:

j=γsDa(Vsvax)=γsDb(Vsvbx)j = \gamma_s D_a (V_s - v_a^x) = \gamma_s D_b (V_s - v_b^x)

where D=mbN=mbγnD = m_b N = m_b \gamma n and:

γs=11Vs2\gamma_s = \frac{1}{\sqrt{1 - V_s^2}}

Tangential Velocity Invariant

[Pons Eqs. 4.10-4.11, with SRGSPH HH, c=1c=1]:

Hγvy=constant across shockH \gamma v^y = \text{constant across shock} Hγvz=constant across shockH \gamma v^z = \text{constant across shock}

Taub Adiabat

[Pons Eq. 4.15, with SRGSPH HH]:

[H2]=(Hbnb+Hana)[P][H^2] = \left( \frac{H_b}{n_b} + \frac{H_a}{n_a} \right) [P]

For ideal gas, this becomes a quadratic for HbH_b [Pons Eq. 4.16, adapted].

Mass Flux from Pressure

[Pons Eq. 4.17]:

j2=[P][H/(mbn)]j^2 = \frac{-[P]}{[H/(m_b n)]}

Complete Riemann Solver Algorithm

Solution Procedure

[Pons §5, SRGSPH §2.7.2]:

  1. Setup: Convert primitive variables to SRGSPH canonical form

    • Compute γL,γR,HL,HR\gamma_L, \gamma_R, H_L, H_R using SRGSPH Eqs. 111, 112, 119
  2. Define wave functions: vLx(P)v_{L*}^x(P), vRx(P)v_{R*}^x(P) using rarefaction/shock relations

  3. Solve for PP_*: Root of vLx(P)vRx(P)=0v_{L*}^x(P) - v_{R*}^x(P) = 0

  4. Compute intermediate states: LL_*, RR_* using appropriate wave relations

  5. Extract interface state [SRGSPH Eq. 423]:

    • If vx>0v_*^x > 0: use LL_*
    • If vx<0v_*^x < 0: use RR_*
    • Return (Pij,vij)(P_{ij}^*, \bm{v}_{ij}^*)

Primitive Variable Recovery

[SRGSPH §2.8]:

After time integration, recover primitives from (Si,ei)(\langle \bm{S}_i \rangle, \langle e_i \rangle).

Quartic Equation for Lorentz Factor

[SRGSPH, after Eq. 409]: With X=γc/(γc1)X = \gamma_c/(\gamma_c - 1):

(γi21)(Xeiγi1)2Si2(Xγi21)2=0(\langle \gamma_i \rangle^2 - 1)(X \langle e_i \rangle \langle \gamma_i \rangle - 1)^2 - \langle \bm{S}_i \rangle^2 (X \langle \gamma_i \rangle^2 - 1)^2 = 0

Solve numerically for γi\langle \gamma_i \rangle.

Velocity Recovery

[SRGSPH Eq. 416]:

vi=Xγi21γi(Xeiγi1)Si\langle \bm{v}_i \rangle = \frac{X \langle \gamma_i \rangle^2 - 1}{\langle \gamma_i \rangle (X \langle e_i \rangle \langle \gamma_i \rangle - 1)} \langle \bm{S}_i \rangle

Other Primitive Variables

From γi\langle \gamma_i \rangle and known Ni\langle N_i \rangle:

ni=Niγi\langle n_i \rangle = \frac{\langle N_i \rangle}{\langle \gamma_i \rangle} Hi=Xeiγi1γi2\langle H_i \rangle = \frac{X \langle e_i \rangle \langle \gamma_i \rangle - 1}{\langle \gamma_i \rangle^2} Pi=ni(Hi1)γc1γcc2\langle P_i \rangle = \langle n_i \rangle (\langle H_i \rangle - 1) \frac{\gamma_c - 1}{\gamma_c} c^2

With c=1c=1: Pi=ni(Hi1)(γc1)/γc\langle P_i \rangle = \langle n_i \rangle (\langle H_i \rangle - 1) (\gamma_c - 1)/\gamma_c


Time Integration

Euler Method

[SRGSPH Eqs. 425-428]:

νiSin+1=νiSin+νiS˙iΔt\langle \nu_i \bm{S}_i \rangle^{n+1} = \langle \nu_i \bm{S}_i \rangle^n + \langle \nu_i \dot{\bm{S}}_i \rangle \Delta t νiein+1=νiein+νie˙iΔt\langle \nu_i e_i \rangle^{n+1} = \langle \nu_i e_i \rangle^n + \langle \nu_i \dot{e}_i \rangle \Delta t xin+1=xin+viΔt\bm{x}_i^{n+1} = \bm{x}_i^n + \langle \bm{v}_i \rangle \Delta t

CFL Condition

[SRGSPH Eqs. 432-433]:

Δt=CCFLmini[hics,i]\Delta t = C_{\text{CFL}} \min_i \left[ \frac{h_i}{c_{s,i}} \right]

Typical: CCFL=0.3C_{\text{CFL}} = 0.3

MUSCL Reconstruction

[SRGSPH §2.7.3]: For second-order accuracy, reconstruct states at interfaces using gradients with shock detection and limiting.


Numerical Implementation (c=1)

Setting c=1

For numerical calculations [SRGSPH, numerical sections], set c=1c = 1:

  • γ=1/1v2\gamma = 1/\sqrt{1 - v^2}
  • H=1+u+P/nH = 1 + u + P/n
  • S=γHv\bm{S} = \gamma H \bm{v}
  • e=γHP/Ne = \gamma H - P/N
  • cs=(γc1)(H1)/Hc_s = \sqrt{(\gamma_c - 1)(H - 1)/H}

Correspondence with Pons Notation

When c=1c=1 and using mass density ρ=mbn\rho = m_b n:

  • SRGSPH HH ↔ Pons hh (numerically equal)
  • SRGSPH nn ↔ Pons ρ/mb\rho/m_b (or ρ\rho with mb=1m_b=1)
  • SRGSPH uu ↔ Pons ϵρ/n\epsilon \rho/n (or ϵ\epsilon with mb=1m_b=1)

This allows direct use of Pons’s Riemann solver formulas with SRGSPH variables.


References

  1. [SRGSPH]: Kitajima, K., Inutsuka, S., & Seno, I. (2025). Special Relativistic Smoothed Particle Hydrodynamics Based on Riemann Solver. Journal of Computational Physics (accepted).

  2. [Pons]: Pons, J.A., Martí, J.M., & Müller, E. (2000). The exact solution of the Riemann problem with non-zero tangential velocities in relativistic hydrodynamics. Journal of Fluid Mechanics, 422, 125-139.

  3. Inutsuka, S. (2002). Reformulation of Smoothed Particle Hydrodynamics with Riemann Solver. Journal of Computational Physics, 179, 238-267.