Tidal Shock Formation in Molecular Clouds Under Intermediate Black Hole Tidal Fields

| February 1, 2025

A semi–analytical framework for tidal shock formation in molecular clouds encountering intermediate black hole tidal fields, expressed in strict vector notation.

Tidal Shock Formation in Molecular Clouds Under Intermediate Black Hole Tidal Fields

Abstract

We develop a comprehensive semi–analytical framework to describe tidal shock formation in a molecular cloud encountering a massive black hole. The cloud is initially modeled as a uniform sphere with radius RR, density ρ0\rho_0, and mass Mcl=1000MM_{\rm cl}=1000\,M_\odot. Under the influence of the black hole’s tidal field, the cloud is deformed by stretching along the orbital direction and compression in the vertical direction. In addition to self–gravity (with a restoring frequency ωs\omega_s) and pressure corrections, we include radiative cooling/heating in the energy equation. Tidal compression increases the density so that the cooling timescale tcoolt_{\rm cool} becomes very short and the gas rapidly cools toward an equilibrium temperature TeqT_{\rm eq}. We also incorporate the cloud’s orbital velocity and the internal tidal–induced velocity (described in a Lagrangian frame) into an overall effective velocity vector vu,eff\mathbf{v}_{u,\mathrm{eff}} that governs shock formation. (When analyzing the shock, one projects vu,eff\mathbf{v}_{u,\mathrm{eff}} onto the shock normal.) Our final normalized formulas are presented in Section 4.


1. Introduction

Molecular clouds in the vicinity of galactic nuclei are subject to intense tidal forces from supermassive or intermediate mass black holes. When a molecular cloud encounters such a tidal field, its deformation is anisotropic: the cloud is stretched along the orbital direction (which we designate as the x^\hat{\mathbf{x}} direction) and compressed in the vertical direction (taken as z^\hat{\mathbf{z}}). A shock forms if the effective upstream velocity—that is, the velocity of the gas impinging on the shock front—exceeds the local sound speed. Because tidal compression increases the gas density, radiative cooling becomes highly efficient and prevents the post–shock temperature from reaching values high enough to dissociate molecules (e.g., CO2_2).

In our treatment the cloud’s center–of–mass moves with an orbital velocity

vorb=v0x^,withv0=10km/s  (1×106cm/s),\mathbf{v}_{\rm orb}=v_0\,\hat{\mathbf{x}},\qquad \text{with}\quad v_0=10\,\mathrm{km/s}\;(1\times10^6\,\mathrm{cm/s})\,,

while tidal forces introduce an additional internal velocity vtidal\mathbf{v}_{\rm tidal}. Consequently, the effective upstream velocity is given by the vector sum

vu,eff=vorb+vtidal.\mathbf{v}_{u,\mathrm{eff}}=\mathbf{v}_{\rm orb}+\mathbf{v}_{\rm tidal}\,.

When computing shock properties, one projects vu,eff\mathbf{v}_{u,\mathrm{eff}} onto the shock normal n^\hat{\mathbf{n}} to obtain the scalar upstream speed. In addition, we now define the Mach number along both the normal direction (typically along x^\hat{x}) and in the vertical (zz) direction.


2. Theoretical Framework

In what follows we detail the derivation of the key equations in strict vector notation.

2.1. Homologous Displacement and Mass Conservation

Assume that the cloud is initially a uniform sphere of radius RR and density ρ0\rho_0. A self–similar (homologous) displacement is expressed as a mapping from the initial (Lagrangian) coordinates r0=(x0,y0,z0)\mathbf{r}_0=(x_0,y_0,z_0) to the current (Eulerian) coordinates:

r(t)=(fx(t)x0,  fy(t)y0,  fz(t)z0).\mathbf{r}(t)=\bigl(f_x(t)x_0,\; f_y(t)y_0,\; f_z(t)z_0\bigr)\,.

For an axisymmetric deformation we set

fx(t)=fy(t)=f(t),fz(t)=f(t),f_x(t)=f_y(t)=f_\parallel(t),\qquad f_z(t)=f_\perp(t),

with the initial conditions f(0)=f(0)=1f_\parallel(0)=f_\perp(0)=1 and f˙(0)=f˙(0)=0\dot{f}_\parallel(0)=\dot{f}_\perp(0)=0. Mass conservation then requires that

ρ(t)=ρ0J(t)=ρ0f(t)2f(t).\rho(t)=\frac{\rho_0}{J(t)}=\frac{\rho_0}{f_\parallel(t)^2\,f_\perp(t)}\,.

A rigorous derivation is provided in Appendix A.1.


2.2. Restoring Acceleration: Self–Gravity and Pressure

Within a uniform sphere, Newton’s shell theorem gives the gravitational acceleration at radius rr as

g(r)=4πGρ03r.\mathbf{g}(r)=\frac{4\pi G\rho_0}{3}\,\mathbf{r}\,.

A small radial displacement δr\delta \mathbf{r} results in a change in acceleration,

δg4πGρ03δr,\delta\mathbf{g}\approx\frac{4\pi G\rho_0}{3}\,\delta \mathbf{r}\,,

so that the restoring acceleration is

arest=δg=ωs2δr,\mathbf{a}_{\rm rest}=-\delta \mathbf{g}=-\omega_s^2\,\delta \mathbf{r}\,,

with

ωs2=4πGρ03.\omega_s^2=\frac{4\pi G\rho_0}{3}\,.

Pressure gradients provide a small additional correction, and we define an effective restoring frequency by

ωeff2=ωs2+Δωpress2.\omega_{\rm eff}^2=\omega_s^2+\Delta\omega_{\rm press}^2\,.

Under nearly isothermal or nearly incompressible conditions, it is appropriate to take ωeffωs\omega_{\rm eff}\approx\omega_s. (See Appendix A.2 for further details.)


2.3. Affine Model and Tidal Forcing

A point mass MBHM_{BH} at a distance rpr_p produces a tidal field whose principal tidal tensor (in a coordinate system with x^\hat{\mathbf{x}} radial and z^\hat{\mathbf{z}} vertical) has eigenvalues

λ=2GMBHrp3andλ=GMBHrp3.\lambda_\parallel=\frac{2GM_{BH}}{r_p^3} \quad \text{and} \quad \lambda_\perp=-\frac{GM_{BH}}{r_p^3}\,.

The evolution equations for the scale factors then become

f¨(t)=(λωeff2)f(t),f¨(t)=(λωeff2)f(t).\ddot{f}_\parallel(t)=\Bigl(\lambda_\parallel-\omega_{\rm eff}^2\Bigr)f_\parallel(t),\qquad \ddot{f}_\perp(t)=\Bigl(\lambda_\perp-\omega_{\rm eff}^2\Bigr)f_\perp(t)\,.

In the tidal limit, the approximate solutions are

f(t)=cosh(λωeff2t),f(t)=cos(ωeff2+GMBHrp3t).f_\parallel(t)=\cosh\Bigl(\sqrt{\lambda_\parallel-\omega_{\rm eff}^2}\,t\Bigr),\qquad f_\perp(t)=\cos\Bigl(\sqrt{\omega_{\rm eff}^2+\frac{GM_{BH}}{r_p^3}}\,t\Bigr)\,.

2.4. Radiative Cooling and the Cooling Timescale

The energy equation can be written as

dϵdt=Pρv+ΓΛ,\frac{d\epsilon}{dt}=-\frac{P}{\rho}\,\nabla\cdot\mathbf{v}+\Gamma-\Lambda\,,

and upon substituting ϵ=cvT\epsilon=c_vT, one obtains

dTdt=(γ1)TvTTeqtcool,\frac{dT}{dt}=-\left(\gamma-1\right)T\,\nabla\cdot\mathbf{v}-\frac{T-T_{\rm eq}}{t_{\rm cool}}\,,

where Γ\Gamma and Λ\Lambda are the heating and cooling rates, respectively. For a net cooling rate per unit volume given by

Λnet=n2Λ(T),\Lambda_{\rm net}=n^2\,\Lambda(T)\,,

the cooling time is approximately

tcoolnkBTn2Λ(T)1n.t_{\rm cool}\sim\frac{n\,k_B\,T}{n^2\,\Lambda(T)}\propto\frac{1}{n}\,.

Since tidal compression increases the density by a factor 1/(f2f)1/(f_\parallel^2f_\perp), the cooling time is reduced accordingly. For instance, if f0.1f_\perp\approx0.1, then tcoolt_{\rm cool} is decreased by roughly an order of magnitude, causing the gas to cool rapidly toward TeqT_{\rm eq}.


2.5. Effective Divergence

In a compressing or collapsing flow the divergence v\nabla\cdot\mathbf{v} may be estimated via the free–fall time,

tff1Gρ,t_{\rm ff}\sim\frac{1}{\sqrt{G\rho}},

which implies

v1tffGρ.\left|\nabla\cdot\mathbf{v}\right|\sim\frac{1}{t_{\rm ff}}\sim\sqrt{G\rho}\,.

For example, if the post–compression number density is n105cm3n\sim10^5\,\mathrm{cm}^{-3} (corresponding to ρ3.84×1019g/cm3\rho\sim 3.84\times10^{-19}\,\mathrm{g/cm^3}), then

Gρ6.67×108×3.84×10191.6×1013s1.\sqrt{G\rho}\sim\sqrt{6.67\times10^{-8}\times3.84\times10^{-19}}\approx1.6\times10^{-13}\,\mathrm{s}^{-1}\,.

An effective divergence of approximately 1×1013s1-1\times10^{-13}\,\mathrm{s}^{-1} is therefore plausible in a strongly compressed cloud.


2.6. Orbital and Tidal–Induced Velocities in Vector Notation

Let the cloud’s center–of–mass (orbital) velocity be

vorb=v0x^,\mathbf{v}_{\rm orb}=v_0\,\hat{x},

with v0=10km/s  (1×106cm/s)v_0=10\,\mathrm{km/s}\;(1\times10^6\,\mathrm{cm/s}). In our axisymmetric model the tidal deformation in the plane produces identical velocity contributions in both the xx and yy directions. Thus, we define the tidal–induced velocities as

vtidalx=fR2GMBHrp3(1η),v_{\rm tidal}^x=f_\parallel\,R\,\sqrt{\frac{2GM_{BH}}{r_p^3}(1-\eta)}, vtidaly=fR2GMBHrp3(1η),v_{\rm tidal}^y=f_\parallel\,R\,\sqrt{\frac{2GM_{BH}}{r_p^3}(1-\eta)},

and in the vertical (zz) direction,

vtidalz=fRGMBHrp3(1η).v_{\rm tidal}^z=f_\perp\,R\,\sqrt{\frac{GM_{BH}}{r_p^3}(1-\eta)}\,.

Accordingly, the full effective upstream velocity vector becomes

vu,eff=vorb+vtidal=v0x^+(vtidalxx^+vtidalyy^+vtidalzz^).\boxed{ \mathbf{v}_{u,\mathrm{eff}} = \mathbf{v}_{\rm orb} + \mathbf{v}_{\rm tidal} = v_0\,\hat{x} + \Bigl( v_{\rm tidal}^x\,\hat{x} + v_{\rm tidal}^y\,\hat{y} + v_{\rm tidal}^z\,\hat{z} \Bigr)\,. }

When analyzing shock formation one projects vu,eff\mathbf{v}_{u,\mathrm{eff}} onto the shock normal n^\hat{n}:

vu,eff(n)=vu,effn^.v_{u,\mathrm{eff}}^{(n)} = \mathbf{v}_{u,\mathrm{eff}}\cdot\hat{n}\,.

In addition to the usual Mach number based on the normal component,

M(n)=vu,eff(n)cs,\mathcal{M}^{(n)} = \frac{v_{u,\mathrm{eff}}^{(n)}}{c_s}\,,

we also define the Mach number in the vertical direction as

M(z)=vtidalzcs.\mathcal{M}^{(z)} = \frac{|v_{\rm tidal}^z|}{c_s}\,.

The self–gravity parameter is defined as

η=MclMBH(rpR)3.\eta=\frac{M_{\rm cl}}{M_{BH}}\Bigl(\frac{r_p}{R}\Bigr)^3\,.

2.7. CO2_2 Survival Criterion

In the strong–shock limit (in the absence of cooling), the post–shock temperature based on the normal component of the effective velocity is

T23μmp16kB(vu,eff(n))2.T_2\sim\frac{3\,\mu\,m_p}{16\,k_B}\,\Bigl(v_{u,\mathrm{eff}}^{(n)}\Bigr)^2\,.

However, efficient cooling forces the gas to relax toward the equilibrium temperature TeqT_{\rm eq}. We therefore define the effective post–shock temperature as

Teff=min{T2,Teq}.T_{\rm eff}=\min\{T_2,\,T_{\rm eq}\}\,.

For CO2_2 survival it is necessary that

Teff<TdisswithTdiss3000K.T_{\rm eff}<T_{\rm diss}\quad \text{with}\quad T_{\rm diss}\sim3000\,\mathrm{K}\,.

2.8. Cooling Timescale Revisited

The net radiative cooling rate per unit volume is

Λnet=n2Λ(T),\Lambda_{\rm net}=n^2\,\Lambda(T)\,,

and the cooling time (i.e., the time to radiate away the thermal energy density nkBTn\,k_B\,T) is approximately

tcoolnkBTn2Λ(T)=kBTnΛ(T).t_{\rm cool}\sim\frac{n\,k_B\,T}{n^2\,\Lambda(T)}=\frac{k_B\,T}{n\,\Lambda(T)}\,.

For example, if after tidal compression n106cm3n\sim10^6\,\mathrm{cm}^{-3} and Λ(T)1023ergcm3/s\Lambda(T)\sim10^{-23}\,\mathrm{erg\,cm^3/s} (for T104KT\sim10^4\,\mathrm{K}), then

tcool1.38×1016T106×10231.38×10Ts.t_{\rm cool}\sim\frac{1.38\times10^{-16}\,T}{10^6\times10^{-23}}\sim1.38\times10\,T\quad\text{s}\,.

For T104KT\sim10^4\,\mathrm{K} this gives tcool1.38×105st_{\rm cool}\sim1.38\times10^5\,\text{s} (a few days), which is much shorter than the typical dynamical timescale (e.g., tff1012st_{\rm ff}\sim10^{12}\,\text{s}), confirming the efficiency of cooling at high densities.


2.9. Vertical Pancake Structure: Quasi–Static and Dynamic Treatment

When a molecular cloud approaches a black hole, tidal forces compress it preferentially in the vertical (zz) direction, producing a “pancaked” structure. In the simplest quasi–static picture one balances the tidal compression against the pressure gradient.

2.9.1. Quasi–Static Equilibrium

The tidal acceleration in the zz direction for small displacements is

atidal(z)=GMBHrp3z.a_{\rm tidal}^{(z)}=-\frac{GM_{BH}}{r_p^3}\,z\,.

For a cloud with vertical thickness HH, the pressure gradient produces an acceleration of order

apresscs2H,a_{\rm press}\sim\frac{c_s^2}{H}\,,

where csc_s is the sound speed. Equating these in magnitude at zHz\sim H leads to

cs2HGMBHrp3H.\frac{c_s^2}{H}\sim\frac{GM_{BH}}{r_p^3}\,H\,.

Solving for HH yields

H2cs2rp3GMBH,orHcsrp3GMBH.H^2\sim\frac{c_s^2\,r_p^3}{GM_{BH}},\quad\text{or}\quad \boxed{H\sim c_s\,\sqrt{\frac{r_p^3}{GM_{BH}}}\,.}

2.9.2. Dynamic Vertical Evolution

When the sound–crossing time is comparable to the dynamical timescale of tidal forcing, a time–dependent treatment is required. Suppose that the vertical coordinate of a fluid element evolves as

z(t)=H(t)z0,z(t)=H(t)\,z_0\,,

with z0z_0 the initial (Lagrangian) coordinate and H(t)H(t) the vertical scaling factor. Then,

z˙(t)=H˙(t)z0,z¨(t)=H¨(t)z0.\dot{z}(t)=\dot{H}(t)\,z_0,\quad \ddot{z}(t)=\ddot{H}(t)\,z_0\,.

The two contributions to the vertical acceleration are:

  1. Tidal Compression:

    atidal(z)=GMBHrp3z=GMBHrp3H(t)z0.a_{\rm tidal}^{(z)}=-\frac{GM_{BH}}{r_p^3}\,z=-\frac{GM_{BH}}{r_p^3}\,H(t)\,z_0\,.
  2. Pressure Gradient:
    Assuming the cloud remains nearly isothermal with pressure P(t)=cs2ρ(t)P(t)=c_s^2\,\rho(t) and a density scaling ρ(t)=ρ0/H(t)\rho(t)=\rho_0/H(t) (for self–similar contraction), the pressure gradient is approximated by

    dPdzPH(t)=cs2ρ0H(t)2.\frac{dP}{dz}\sim\frac{P}{H(t)}=\frac{c_s^2\,\rho_0}{H(t)^2}\,.

    The corresponding acceleration is then

    apress=1ρ(t)dPdz=cs2H(t).a_{\rm press}=-\frac{1}{\rho(t)}\frac{dP}{dz}=-\frac{c_s^2}{H(t)}\,.

The net vertical acceleration is given by

z¨(t)=H¨(t)z0=atidal(z)+apress.\ddot{z}(t)=\ddot{H}(t)\,z_0=a_{\rm tidal}^{(z)}+a_{\rm press}\,.

Dividing by z0z_0 leads to the evolution equation for H(t)H(t):

H¨(t)=GMBHrp3H(t)+cs2H(t).\boxed{\ddot{H}(t)=-\frac{GM_{BH}}{r_p^3}\,H(t)+\frac{c_s^2}{H(t)}\,.}

The quasi–static equilibrium is recovered by setting H¨(t)=0\ddot{H}(t)=0, which yields

Heq=csrp3GMBH.H_{\rm eq}=c_s\,\sqrt{\frac{r_p^3}{GM_{BH}}}\,.

A linear perturbation analysis about HeqH_{\rm eq} shows oscillatory behavior with frequency

ω=2GMBHrp3,\omega=\sqrt{\frac{2GM_{BH}}{r_p^3}},

and an oscillation period

T=2πrp32GMBH.T=2\pi\sqrt{\frac{r_p^3}{2GM_{BH}}}\,.

3. Numerical Example

We now illustrate the framework with representative parameters:

  • Black Hole Mass:

    MBH=105M2.0×1038g.M_{BH}=10^5\,M_\odot\approx2.0\times10^{38}\,\mathrm{g}\,.
  • Cloud Mass:

    Mcl=1000M2.0×1036g.M_{\rm cl}=1000\,M_\odot\approx2.0\times10^{36}\,\mathrm{g}\,.
  • Cloud Radius:

    R=1.5pc4.63×1018cm.R=1.5\,\mathrm{pc}\approx4.63\times10^{18}\,\mathrm{cm}\,.
  • Periastron Distance:

    rp=3pc9.26×1018cm.r_p=3\,\mathrm{pc}\approx9.26\times10^{18}\,\mathrm{cm}\,.
  • Initial Cloud Temperature:

    Tcloud=10K,T_{\rm cloud}=10\,\mathrm{K}\,,

    with the equilibrium temperature Teq=20KT_{\rm eq}=20\,\mathrm{K}.

  • Cooling Timescale:

    tcool=1×1012s.t_{\rm cool}=1\times10^{12}\,\mathrm{s}\,.
  • Effective Divergence:

    v=1×1013s1.\nabla\cdot\mathbf{v}=-1\times10^{-13}\,\mathrm{s}^{-1}\,.
  • Orbital Velocity:

    vorb=1×106cm/sx^.\mathbf{v}_{\rm orb}=1\times10^6\,\mathrm{cm/s}\,\hat{x}\,.
  1. Initial Density:

    The initial density is given by

    ρ0=3Mcl4πR33×2.0×10364π(4.63×1018)34.81×1022g/cm3.\rho_0=\frac{3M_{\rm cl}}{4\pi R^3}\approx\frac{3\times2.0\times10^{36}}{4\pi(4.63\times10^{18})^3}\approx4.81\times10^{-22}\,\mathrm{g/cm^3}\,.
  2. Self–Gravity Frequency:

    Using

    ωs=4πGρ03,\omega_s=\sqrt{\frac{4\pi G\rho_0}{3}},

    we obtain ωs1.16×1014s1\omega_s\approx1.16\times10^{-14}\,\mathrm{s}^{-1}.

  3. Tidal Eigenvalues:

    The eigenvalues are

    λ2GMBHrp3andλGMBHrp3,\lambda_\parallel\approx\frac{2GM_{BH}}{r_p^3}\quad\text{and}\quad \lambda_\perp\approx-\frac{GM_{BH}}{r_p^3}\,,

    which, for these parameters, are on the order of 1026s210^{-26}\,\mathrm{s}^{-2}.

  4. Affine Model Scale–Factors:

    At time t0=5×1012st_0=5\times10^{12}\,\mathrm{s} we find

    f(t0)cosh(0.71)1.26,f(t0)cos(0.87)0.64.f_\parallel(t_0)\approx\cosh(0.71)\approx1.26,\qquad f_\perp(t_0)\approx\cos(0.87)\approx0.64\,.
  5. Self–Gravity Parameter:

    The parameter

    η=MclMBH(rpR)3=0.01×(3pc1.5pc)3=0.08.\eta=\frac{M_{\rm cl}}{M_{BH}}\Bigl(\frac{r_p}{R}\Bigr)^3=0.01\times\Bigl(\frac{3\,\mathrm{pc}}{1.5\,\mathrm{pc}}\Bigr)^3=0.08\,.
  6. Tidal–Induced Velocity Components:

    • In the xx–direction:

      vtidalx=f(t0)R2GMBHrp3(1η).v_{\rm tidal}^x = f_\parallel(t_0)\,R\,\sqrt{\frac{2GM_{BH}}{r_p^3}(1-\eta)}\,.

      With f(t0)R1.26×4.63×10185.84×1018cmf_\parallel(t_0)R\approx1.26\times4.63\times10^{18}\approx5.84\times10^{18}\,\mathrm{cm} and assuming 2GMBHrp3(1η)8.2×1014s1\sqrt{\frac{2GM_{BH}}{r_p^3}(1-\eta)}\sim8.2\times10^{-14}\,\mathrm{s}^{-1}, we have

      vtidalx5.84×1018cm×8.2×1014s14.79×105cm/s.v_{\rm tidal}^x\approx5.84\times10^{18}\,\mathrm{cm}\times8.2\times10^{-14}\,\mathrm{s}^{-1}\approx4.79\times10^5\,\mathrm{cm/s}\,.
    • In the yy–direction:

      vtidaly=f(t0)R2GMBHrp3(1η)4.79×105cm/s.v_{\rm tidal}^y = f_\parallel(t_0)\,R\,\sqrt{\frac{2GM_{BH}}{r_p^3}(1-\eta)}\approx4.79\times10^5\,\mathrm{cm/s}\,.
    • In the zz–direction:

      vtidalz=f(t0)RGMBHrp3(1η).v_{\rm tidal}^z = f_\perp(t_0)\,R\,\sqrt{\frac{GM_{BH}}{r_p^3}(1-\eta)}\,.

      With f(t0)R0.64×4.63×10182.96×1018cmf_\perp(t_0)R\approx0.64\times4.63\times10^{18}\approx2.96\times10^{18}\,\mathrm{cm} and assuming GMBHrp3(1η)4.1×1014s1\sqrt{\frac{GM_{BH}}{r_p^3}(1-\eta)}\sim4.1\times10^{-14}\,\mathrm{s}^{-1}, we obtain

      vtidalz2.96×1018cm×4.1×1014s11.21×105cm/s.v_{\rm tidal}^z\approx2.96\times10^{18}\,\mathrm{cm}\times4.1\times10^{-14}\,\mathrm{s}^{-1}\approx1.21\times10^5\,\mathrm{cm/s}\,.
  7. Effective Upstream Velocity Vector:

    The complete effective velocity is then

    vu,eff=vorb+vtidal=v0x^+(vtidalxx^+vtidalyy^+vtidalzz^).\mathbf{v}_{u,\mathrm{eff}} = \mathbf{v}_{\rm orb} + \mathbf{v}_{\rm tidal} = v_0\,\hat{x} + \Bigl( v_{\rm tidal}^x\,\hat{x} + v_{\rm tidal}^y\,\hat{y} + v_{\rm tidal}^z\,\hat{z} \Bigr)\,.

    Substituting numbers, we have

    vu,eff(1.0×106+4.79×105)x^+(4.79×105)y^+(1.21×105)z^cm/s.\mathbf{v}_{u,\mathrm{eff}} \approx \Bigl(1.0\times10^6 + 4.79\times10^5\Bigr)\,\hat{x} + \Bigl(4.79\times10^5\Bigr)\,\hat{y} + \Bigl(1.21\times10^5\Bigr)\,\hat{z}\quad\mathrm{cm/s}\,.

    When the shock normal is chosen along x^\hat{x}, the normal component is

    vu,eff(n)1.48×106cm/s,v_{u,\mathrm{eff}}^{(n)}\approx1.48\times10^6\,\mathrm{cm/s}\,,

    and the Mach number in that direction is

    M(n)=1.48×106cs.\mathcal{M}^{(n)}=\frac{1.48\times10^6}{c_s}\,.

    Similarly, the Mach number in the vertical (zz) direction is given by

    M(z)=vtidalzcs=1.21×105cs.\mathcal{M}^{(z)}=\frac{|v_{\rm tidal}^z|}{c_s}=\frac{1.21\times10^5}{c_s}\,.
  8. Sound Speed and Mach Numbers:

    Rapid cooling forces the post–shock temperature to Teq20KT_{\rm eq}\approx20\,\mathrm{K}, which gives a sound speed of

    cs3.46×104cm/s.c_s\approx3.46\times10^4\,\mathrm{cm/s}\,.

    Thus, the normal Mach number becomes

    M(n)1.48×1063.46×10442.7,\mathcal{M}^{(n)}\approx\frac{1.48\times10^6}{3.46\times10^4}\approx42.7\,,

    and the vertical Mach number is

    M(z)1.21×1053.46×1043.5.\mathcal{M}^{(z)}\approx\frac{1.21\times10^5}{3.46\times10^4}\approx3.5\,.
  9. Post–Shock Temperature:

    In the absence of cooling, the strong–shock limit yields

    T23μmp16kB(vu,eff(n))21.14×104K.T_2\sim\frac{3\,\mu\,m_p}{16\,k_B}\,\Bigl(v_{u,\mathrm{eff}}^{(n)}\Bigr)^2\sim1.14\times10^4\,\mathrm{K}\,.

    However, because efficient cooling forces the effective post–shock temperature to be

    Teff=min{T2,Teq}20K,T_{\rm eff}=\min\{T_2,\,T_{\rm eq}\}\approx20\,\mathrm{K}\,,

    CO2_2 survival is ensured as TeffTdiss3000KT_{\rm eff}\ll T_{\rm diss}\sim3000\,\mathrm{K}.

  10. Vertical Pancake Thickness:

    In the quasi–static approximation, the vertical thickness is given by

    Hcsrp3GMBH.H\sim c_s\,\sqrt{\frac{r_p^3}{GM_{BH}}}\,.

    Inserting the numerical values yields

    H3.5×104cm/s×7.72×1012s2.70×1017cm0.09pc.H\sim 3.5\times10^4\,\mathrm{cm/s}\times7.72\times10^{12}\,\mathrm{s}\sim2.70\times10^{17}\,\mathrm{cm}\sim0.09\,\mathrm{pc}\,.
  11. Dynamic Time–Scales:

    The oscillation frequency for vertical motions is

    ω=2GMBHrp35.79×1013s1,\omega=\sqrt{\frac{2GM_{BH}}{r_p^3}}\approx5.79\times10^{-13}\,\mathrm{s^{-1}},

    so that the oscillation period is

    T2π5.79×10131.085×1013s3.44×105yr.T\approx\frac{2\pi}{5.79\times10^{-13}}\approx1.085\times10^{13}\,\mathrm{s}\approx3.44\times10^5\,\mathrm{yr}\,.

    The sound–crossing time is approximately

    tscHcs2.70×1017cm3.5×104cm/s7.7×1012s2.4×105yr.t_{\rm sc}\sim\frac{H}{c_s}\sim\frac{2.70\times10^{17}\,\mathrm{cm}}{3.5\times10^4\,\mathrm{cm/s}}\sim7.7\times10^{12}\,\mathrm{s}\sim2.4\times10^5\,\mathrm{yr}\,.

    These comparable timescales indicate that a full time–dependent treatment may be required when external forcing varies on similar time–scales.


4. Discussion and Final Remarks

Our analysis demonstrates a framework for understanding both the shock formation and the vertical (pancake) structure of molecular clouds as they interact with the tidal fields of black holes. The effective upstream velocity,

vu,eff=v0x^+(vtidalxx^+vtidalyy^+vtidalzz^),\boxed{ \mathbf{v}_{u,\mathrm{eff}}=v_0\,\hat{x}+\Bigl(v_{\rm tidal}^x\,\hat{x}+v_{\rm tidal}^y\,\hat{y}+v_{\rm tidal}^z\,\hat{z}\Bigr), }

provides the basis for computing shock properties via its normal component,

vu,eff(n)=vu,effn^.v_{u,\mathrm{eff}}^{(n)}=\mathbf{v}_{u,\mathrm{eff}}\cdot\hat{n}\,.

In addition to the Mach number computed along the shock normal,

M(n)=vu,eff(n)cs,\mathcal{M}^{(n)}=\frac{v_{u,\mathrm{eff}}^{(n)}}{c_s}\,,

the vertical Mach number is given by

M(z)=vtidalzcs.\mathcal{M}^{(z)}=\frac{|v_{\rm tidal}^z|}{c_s}\,.

Our numerical example shows that even moderate bulk velocities can lead to highly supersonic shocks in the normal direction (M(n)42.7\mathcal{M}^{(n)}\approx42.7), while the vertical component corresponds to a moderate Mach number (M(z)3.5\mathcal{M}^{(z)}\approx3.5). Furthermore, the balance between tidal compression and internal pressure defines a quasi–static vertical thickness

Hcsrp3GMBH,H\sim c_s\,\sqrt{\frac{r_p^3}{GM_{BH}}}\,,

with typical values of H0.09pcH\sim0.09\,\mathrm{pc}. When time–dependent effects are included, the vertical scale factor H(t)H(t) obeys the evolution equation

H¨(t)=GMBHrp3H(t)+cs2H(t).\boxed{\ddot{H}(t)=-\frac{GM_{BH}}{r_p^3}\,H(t)+\frac{c_s^2}{H(t)}\,.}

Linearization around the equilibrium value reveals oscillations with frequency

ω=2GMBHrp3.\omega=\sqrt{\frac{2GM_{BH}}{r_p^3}}\,.

Finally, when shock heating, in–plane distortions, and additional forcing (e.g., Fshock(t)F_{\rm shock}(t)) are considered, the effective sound speed increases and the evolution equation becomes

H¨(t)=GMBHrp3H(t)+ceff2(t)H(t)+Fshock(t),\ddot{H}(t)=-\frac{GM_{BH}}{r_p^3}\,H(t)+\frac{c_{\rm eff}^2(t)}{H(t)}+F_{\rm shock}(t)\,,

potentially leading to a vertical thickness significantly larger than the quasi–static prediction.

This framework, complete with numerical estimates and detailed derivations (see Appendices), provides a basis for understanding the shock structure and vertical evolution of molecular clouds interacting with black holes.


Appendix A: Detailed Derivations

A.1. Homologous Radial Displacement and Mass Conservation

For a uniform sphere with radius RR and density ρ0\rho_0, the mapping

x=fx(t)x0,y=fy(t)y0,z=fz(t)z0,x=f_x(t)x_0,\quad y=f_y(t)y_0,\quad z=f_z(t)z_0,

with axisymmetry (fx=fyff_x=f_y\equiv f_\parallel and fzff_z\equiv f_\perp), has Jacobian

J=f(t)2f(t).J=f_\parallel(t)^2\,f_\perp(t)\,.

Thus, mass conservation requires

ρ(t)=ρ0J=ρ0f(t)2f(t).\rho(t)=\frac{\rho_0}{J}=\frac{\rho_0}{f_\parallel(t)^2\,f_\perp(t)}\,.

A.2. Restoring Acceleration from Self–Gravity

Within a uniform sphere, Newton’s shell theorem gives

g(r)=4πGρ03r.\mathbf{g}(r)=\frac{4\pi G\rho_0}{3}\,\mathbf{r}\,.

A small radial displacement δr\delta \mathbf{r} produces

δg4πGρ03δr,\delta\mathbf{g}\approx\frac{4\pi G\rho_0}{3}\,\delta \mathbf{r}\,,

and the restoring acceleration is then

arest=δg=ωs2δr,\mathbf{a}_{\rm rest}=-\delta\mathbf{g}=-\omega_s^2\,\delta \mathbf{r}\,,

with

ωs2=4πGρ03.\omega_s^2=\frac{4\pi G\rho_0}{3}\,.

A.3. Pressure Correction

For a nearly isothermal fluid, the pressure perturbation is given by

δP=cs2δρ.\delta P=c_s^2\,\delta\rho\,.

Mass conservation implies

δρρ03δrR,\frac{\delta\rho}{\rho_0}\approx-3\,\frac{\delta r}{R}\,,

so that the pressure gradient force per unit mass is approximately

apress1ρ0δPδr3cs2R2δr.\mathbf{a}_{\rm press}\sim-\frac{1}{\rho_0}\frac{\delta P}{\delta r}\sim\frac{3c_s^2}{R^2}\,\delta \mathbf{r}\,.

Hence, the effective restoring acceleration is

anet=ωeff2δrwithωeff2=ωs2+Δωpress2.\mathbf{a}_{\rm net}=-\omega_{\rm eff}^2\,\delta \mathbf{r}\quad\text{with}\quad \omega_{\rm eff}^2=\omega_s^2+\Delta\omega_{\rm press}^2\,.

A.4. Rankine–Hugoniot Jump Conditions in Vector Form

For a shock with upstream velocity vu,eff\mathbf{v}_{u,\mathrm{eff}}, the relevant quantity is its projection onto the shock normal n^\hat{\mathbf{n}}:

vu,eff(n)=vu,effn^.v_{u,\mathrm{eff}}^{(n)}=\mathbf{v}_{u,\mathrm{eff}}\cdot\hat{\mathbf{n}}\,.

This scalar velocity is then used to determine the Mach number and apply the jump conditions.


A.5. Orbital Dynamics and Affine Deformation

The cloud’s center–of–mass moves with

vorb=v0x^,\mathbf{v}_{\rm orb}=v_0\,\hat{x},

and its deformation is modeled by the affine transformation

r(t)=A(t)r0withA(t)=(f(t)000f(t)000f(t)).\mathbf{r}(t)=\mathbf{A}(t)\,\mathbf{r}_0\quad \text{with}\quad \mathbf{A}(t)= \begin{pmatrix} f_\parallel(t)&0&0\\[1mm] 0&f_\parallel(t)&0\\[1mm] 0&0&f_\perp(t) \end{pmatrix}\,.

A.6. Tidal Acceleration in the Linear Approximation

Expanding the gravitational potential Φ(r)=GMBH/r\Phi(r)=-GM_{BH}/r about the periastron rpr_p, one obtains the tidal accelerations:

atidal2GMBHrp3x,atidalGMBHrp3z.a_{\rm tidal}^\parallel\approx\frac{2GM_{BH}}{r_p^3}\,x,\quad a_{\rm tidal}^\perp\approx-\frac{GM_{BH}}{r_p^3}\,z\,.

Including a correction factor (1η)(1-\eta) to account for the cloud’s self–gravity leads to

aeff=2GMBHrp3(1η)x,aeff=GMBHrp3(1η)z.a_{\rm eff}^\parallel=\frac{2GM_{BH}}{r_p^3}(1-\eta)\,x,\quad a_{\rm eff}^\perp=-\frac{GM_{BH}}{r_p^3}(1-\eta)\,z\,.

A.7. Induced Velocity Components

Because the cloud deforms affinely, differentiating

x(t)=f(t)x0x(t)=f_\parallel(t)x_0

twice gives

f¨(t)x0=2GMBHrp3(1η)f(t)x0,\ddot{f}_\parallel(t)x_0=\frac{2GM_{BH}}{r_p^3}(1-\eta)f_\parallel(t)x_0,

or equivalently

f¨(t)=ω2f(t),withω=2GMBHrp3(1η).\ddot{f}_\parallel(t)=\omega_\parallel^2\,f_\parallel(t),\quad \text{with}\quad \omega_\parallel=\sqrt{\frac{2GM_{BH}}{r_p^3}(1-\eta)}\,.

Similarly, in the zz–direction,

f¨(t)=ω2f(t),withω=GMBHrp3(1η).\ddot{f}_\perp(t)=-\omega_\perp^2\,f_\perp(t),\quad \text{with}\quad \omega_\perp=\sqrt{\frac{GM_{BH}}{r_p^3}(1-\eta)}\,.

Thus, the tidal–induced velocities are

vtidalxf(t)R2GMBHrp3(1η),vtidalyf(t)R2GMBHrp3(1η),v_{\rm tidal}^x\sim f_\parallel(t)R\,\sqrt{\frac{2GM_{BH}}{r_p^3}(1-\eta)},\quad v_{\rm tidal}^y\sim f_\parallel(t)R\,\sqrt{\frac{2GM_{BH}}{r_p^3}(1-\eta)}, vtidalzf(t)RGMBHrp3(1η).v_{\rm tidal}^z\sim f_\perp(t)R\,\sqrt{\frac{GM_{BH}}{r_p^3}(1-\eta)}\,.

A.8. Self–Gravity Parameter

The self–gravity parameter is defined by

η=MclMBH(rpR)3,\eta=\frac{M_{\rm cl}}{M_{BH}}\Bigl(\frac{r_p}{R}\Bigr)^3\,,

which compares the cloud’s binding to the tidal force exerted by the black hole.


A.9. The Vis–Viva Equation

The Vis–Viva equation,

v2=GMBH(2r1a),v^2=GM_{BH}\Bigl(\frac{2}{r}-\frac{1}{a}\Bigr)\,,

is derived from equating the orbital energy expressions and is used to estimate the orbital velocity of the cloud.


This revised version now includes the yy–direction in the effective velocity vector and provides the vertical (zz–direction) Mach number.